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1. Introduction

Industrial condition monitoring applications have improved a lot 
depending on the novel monitoring technologies and artificial intel-
ligence decision making methods. In places where production contin-
ues uninterrupted such as factories, power generation facilities, lifting 
appliances, elevators, it is extremely important for systems to operate 
without any faults in terms of cost and work safety [31]. Due to the 

increased complexity and precision of these systems and engineering 
applications, condition monitoring and reliability problems become 
more prominent [41]. During condition monitoring, the system is real 
time observed and real time measurements are done. By interpreting 
the measurements, whether there is a fault in the machine or not, is de-
termined and the maintenance plan is applied accordingly. Establish-
ing a reliable condition monitoring system, especially for gear faults, 
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Worm gearboxes (WG) are often preferred, because of their high torque, quickly reducing speed capacity and good meshing ef-
fectiveness, in many industrial applications. However, WGs may face with some serious problems like high temperature at the 
speed reducer, gear wearing, pitting, scoring, fractures and damages. In order to prevent any damage, loss of time and money, it 
is an important issue to detect and classify the faults of WGs and develop the maintenance plans accordingly. The present study 
addresses the application of the deep learning method, convolutional neural network (CNN), in the field of thermal imaging that 
were gathered from a test rig operating on different loads and speeds. Deep learning approaches, have proven their powerful ca-
pability to exploit faulty information from big data and make intelligently diagnostic decisions. Studies concerning the condition 
monitoring of WGs in the literature are limited. This is the first study on WGs with infrared thermography rather than vibration 
and sound measurements which have some deficiencies about hardware requirements, restricted measurement abilities and noisy 
signals. For comparison, CNN was also trained, with vibration and sound data which were collected from the healthy and faulty 
WGs. The results of fault diagnosis show that thermal image based CNN model on WG has achieved 100% success rate whereas 
the vibration performance was 83.3 % and sound performance was 81.7%. As a result, thermal image based CNN model showed 
a better diagnosing performance than the others for WGs. Moreover, condition monitoring of WGs, can be performed correctly 
with less measurement costs via thermal imaging methods.

Keywords: fault diagnosis, worm gears, thermal imaging, convolutional neural networks, GoogLeNet, condi-
tion monitoring.

W wielu zastosowaniach przemysłowych preferuje się przekładnie ślimakowe, ze względu na ich wysoki moment obrotowy, moż-
liwość szybkiej redukcji prędkości i dobrą sprawność zazębienia. Jednakże przekładnie tego typu narażone są często na poważ-
ne problemy, takie jak wysoka temperatura przy reduktorze prędkości czy też zużycie, pitting (wżery), zatarcie, pęknięcie lub 
uszkodzenie kół zębatych. Zapobiec takim uszkodzeniom, i związanym z nimi stratom finansowym i czasowym, można poprzez 
wykrywanie i klasyfikowanie błędów przekładni i odpowiednie opracowanie planów konserwacji. Niniejsze badanie dotyczy za-
stosowania metody głębokiego uczenia oraz splotowych sieci neuronowych (SSN) do monitoringu stanu przekładni na podstawie 
termogramów zarejestrowanych na stanowisku testowym pracującym przy różnych obciążeniach i prędkościach. Podejścia oparte 
na uczeniu głębokim umożliwiają efektywne wykorzystanie informacji o błędach pochodzących z dużych zbiorów danych i podej-
mowanie trafnych decyzji diagnostycznych. Niewiele z dostępnych publikacji poświęconych jest monitorowaniu stanu przekładni 
ślimakowych. Niniejsza praca jako pierwsza przedstawia badania przekładni ślimakowej z zastosowaniem termografii zamiast 
zwyczajowo prowadzonych pomiarów drgań i dźwięku, które mają pewne wady dotyczące wymagań sprzętowych, ograniczonych 
możliwości pomiarowych i głośności sygnałów. SNN opartą na danych termicznych porównano z siecią, którą uczono na zbiorach 
danych wibracyjnych i akustycznych pochodzących z prawidłowo działających i uszkodzonych przekładni ślimakowych. Wyniki 
diagnostyki uszkodzeń pokazują, że model SSN przekładni ślimakowej oparty na obrazie termicznym osiągnął stuprocentową 
(100%) skuteczność, podczas gdy skuteczność modeli opartych na danych wibracyjnych i akustycznych wyniosła, odpowiednio, 
83,3% i 81,7%. Tym samym, model SNN oparty na obrazie termicznym pozwalał na trafniejsze diagnozowanie przekładni ślima-
kowej niż pozostałe modele. Ponadto zastosowanie metod opartych na termografii pozwala na poprawne monitorowanie stanu 
przy niższych kosztach pomiaru.

Słowa kluczowe: Diagnostyka błędów, przekładnie ślimakowe, termografia, splotowe sieci neuronowe, Go-
ogLeNet, monitorowanie stanu.
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ensures a smooth operation during the working of many industrial 
equipment [33].

Worm gear condition monitoring studies also plays a critical role 
in the maintenance plan since they are commonly used for power and 
motion transmission in many industrial applications and machines. 
They contain a mechanism consisting of worm screw and worm wheel 
that work together and differ from other types of reducers due to their 
lightness, simplicity and high gear ratio [11]. The main problem with a 
WG is how it transfers power. The spiral motion allows huge amounts 
of reduction in a comparatively small amount of space however this 
motion can also cause a problematic condition that is called sliding 
wear. During the working of a WG set, as the worm slides across the 
apex of the wheel, it slowly rubs off the lubricant film, and as a result, 
the worm rubs at the metal of the wheel in a boundary lubrication 
regime. When the worm surface leaves the wheel surface, it picks up 
more lubricant, and starts the process over again on the next revolu-
tion. This contact between the worm and the wheel in less lubricant 
conditions can cause wear and high temperature which need to be 
diagnosed.  The most common problems faced with WGs are the high 
temperature at the speed reducer causing oil leakage, gear wearing, 
pitting, scoring and bearing fractures and damages. In order to prevent 
any damage, loss of time and money, serious precautions should be 
taken or predictive maintenance methods should be applied. 

There are commonly used techniques such as vibration monitor-
ing, acoustic monitoring, wear debris analysis, motor current analysis, 
in the literature for monitoring the conditions of gearboxes. Ghodake 
et al. [8] reviewed fault detection studies for worm gearboxes. Goyal 
et al. [9] performed a review study for condition monitoring and fault 
diagnosis for fixed axis gearboxes. Carden and Fanning [5] reviewed 
condition monitoring studies based on vibration analysis. Liu and 
Zhang [26] put ahead failure modes, condition monitoring and fault 
diagnosis methods for wind turbine bearings. Sait and Sharaf-Eldeen 
[35] conducted a review study on fault diagnostic and prognostic with 
the vibration analysis technique. Sharma et al. [37] reviewed different 
statistical condition indicators in time and frequency domains for gear 
faults. Lei et al. [18] reviewed studies of empirical mode decompo-
sition method to diagnose faults of rotating machinery. Osman and 
Wang [32] proposed an improved Hilbert–Huang transform technique 
to diagnose faults of bearings using vibration signal analysis. They 
verified the effectiveness of the suggested technique in feature extrac-
tion and analysis by experimental tests. Wang et al. [45] proposed 
a hybrid technique by using complex wavelet transform for health 
diagnosis of rotating machines. They used numerical simulation and 
experimental studies under varying operating conditions to show the 
effectiveness of the hybrid technique. Loutas et al. [28] used on-line 
signal measurements and studied condition monitoring of a single-
stage gearbox having artificial cracks. They used acoustic emission 
and vibration measurements to make use of this purpose. Zhang et 
al. [48] improved a new feature extraction method named Narrow-
band Interference Cancellation to diagnose gear faults easier. Zhang 
and Zhao [49] proposed a compound fault detection approach based 
on time synchronous resampling and adaptive variational mode de-
composition for gearboxes. With the experimental data analysis, they 
showed that the method is valid and can be used for fault detection of 
gearbox. Zhang et al. [50] proposed a fault diagnosis method based on 
singular value decomposition and radial basis function neural network 
to detect weak gear fault signals. Zhao et al. [51] proposed a local 
feature-based recurrent unit networks for monitoring health of ma-
chines. The method is a hybrid approach that integrates feature design 
with automatic feature learning.

 Vibration monitoring has been considered as the most prevalent 
technique because it is easier to gather vibration data with vibration 
sensors [36]. Vibration sensors are versatile tools that measure accel-
eration for various applications [43]. However, the signals obtained 
from vibration sensors are very prone to the position of placements, 

harsh working conditions and high temperature [10]. Vibration and 
acoustic measurements were also conducted together to improve the 
performance [27]. Thermal Imaging Technique (TIT) is introduced 
as a contactless, continuous and easy to implement technique [3] that 
can sense the radiation in a long-infrared range (9-14μm) of the elec-
tromagnetic spectrum and produce thermal images known as ther-
mograms [29]. A single thermogram recorded in a very short time 
interval can contain multiple temperature points and provides infor-
mation about the system being studied [34]. In addition, infrared ther-
mography technique is used as a condition monitoring tool in which 
contactless and real-time abnormal temperature distribution can be 
detected [3].  Singh et al. [39] presented a comparative fault detection 
approach on asynchronous motors using the infrared thermography. 
They also detected in-turn and cooling system failures of induction 
motor with thermal imaging techniques [40]. Wakar and Demetgül 
[46] collected thermal images for normal and faulty conditions un-
der different speeds through an experimental system containing worm 
gearbox, and a multilayer perceptron was developed based on vibra-
tion and acoustic emission signals. Janssens et al. [13] detected eight 
different faults of bearings using thermal image based fault detection 
system and proposed two new features for thermal imaging of rotat-
ing machines. Al-Musawi et al. [2] developed a new coloring model 
and classified different bearing faults of a three-phase induction motor 
based on thermal image segmentation. Younus and Yang [47] devel-
oped a new intelligent detection system to classify different operating 
conditions based on the support vector machine and linear discrimi-
nant analysis using data from infrared thermography. Zhang et al. [50] 
used singular value decomposition and Radial Basis Function neural 
network for the detection of gear faults. In different condition moni-
toring studies, artificial neural network (ANN) based methods and 
computational modelling methods were used [22]. 

Despite the use of many fault detection and condition monitoring 
studies with the use of numerous diagnosing algorithms, such as sup-
port vector machines, empirical mode decomposition, Wigner-Ville 
distribution, short-time Fourier Transform, etc [22], as the evaluation 
data become larger, an efficient deep learning method, CNN, was in-
troduced, in which extracting special features from the entire data is 
not needed.  Nowadays, condition monitoring of mechanical faults in 
rotating components, are being prescribed by intelligent diagnosing 
methods such as artificial intelligence techniques and deep learning 
[9]. Deep learning is one of the newest machine learning techniques 
and has recently been used in condition monitoring studies and has 
been proved to be an effective methodology to improve the safety 
and reliability of gearboxes [17]. Zhao et al. [51] was the first who 
redefined the representation learning of raw data with the deep learn-
ing method. They proposed a local feature-based gated recurrent 
unit network for fault diagnosis. Li et al. [25] presented a modified 
deep learning method that can be used in case of limited data access 
and compared the method with traditional deep learning methods in 
terms of diagnostic success using datasets of two different gearboxes. 
Li et al. [22] proposed a new method named augmented convolu-
tion sparse auto-encoder to diagnose pitting faults of gears by using 
acoustic emission signals. Comparative analysis shows that the pro-
posed method gives better results than fully-connected layer neural 
network and convolutional neural network. Few researches were car-
ried out fault detection and classification with thermal image based 
deep learning methods. Li et al. [24] have used thermal imaging as a 
cost-effective and practical predictive maintenance method. In their 
study, they processed thermal images with a convolutional neural net-
work (CNN) and allowed online remote condition monitoring of a 
gearbox. Their proposed method predicted faults on the gearbox with 
higher accuracy rate than their vibration-based counterparts. Janssens 
et al. [14] analyzed infrared thermal video images with deep learning 
algorithm to determine the condition of the machine automatically. 
Then, with deep learning, they detected the machine’s faults and oil 
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level. Li et al. [23] proposed a CNN method based on infrared thermal 
images to detect faults of rotors and bearings on rotating machines 
and compared the results with conventional vibration or sound based 
approaches and other CNN types. Condition monitoring studies based 
on thermal images with CNN are limited to these publications. How-
ever, many studies have been carried out for fault detection with vi-
bration and sound based deep learning. Jing et al. [15]   proposed a 
CNN based feature learning and fault diagnosis method for gearboxes 
and showed that the CNN is more appropriate to learn features from 
vibration signal. Li et al. [19] proposed a deep random forest fusion 
method by using acoustic and vibration signals. They showed that the 
deep learning fusion can develop the ability of fault detection and 
diagnosis for gearbox. In another study, Li et al. [20] studied deep 
statistical feature learning to diagnose rotating machinery faults. The 
experiments show that the proposed method based on deep learning 
has the best fault classification rate and potential for diagnosing of 
rotating machinery faults.  

This study presents a condition monitoring application with CNN, 
based on thermal images of a WG test rig which simulates different 
operating loads and speeds.  The novelty of this study lies in the ap-
plication of CNN for detecting faults on WGs from thermal imaging 
data. Vibration and sound signal measurement and analysis devices 
are relatively expensive than thermal cameras. Moreover, compared 
to signal analysing devices, a camera can examine the entire surface of 
WG.  The operating speed and loading rate have a major impact on the 
gearbox temperature, sound and vibration behaviour. In order to dis-
tinguish the fault and the effect of working conditions, measurements 
should be done for all of the operating conditions. For this reason, in 
this study a test rig that can work at different speeds and loading rates 
was used to collect thermal images, vibration and sound signals from 
healthy and faulty WGs. Since an industrial WG is loaded at different 
rates and operated at different speeds in the real working environment, 
measurements at constant speed and load are only valid for a limited 
operating range. For comparison reasons, vibration and acoustic data 
were also gathered for all working conditions. The effects of varying 
resolution on performance of CNN are also depicted. As far as the 
authors’ search, the results of the present study are of vital importance 
to the development of WG knowledge and industry.

The rest of this paper is formed as follows. Section 2 describes the 
experimental system, test rig and measurement elements. Section 3 
describes the methodology and theoretical background of CNN-based 
fault diagnosis and proposed models for WG. Section 4 describes 

experimental validation and performance comparison with proposed 
models. Finally, section 5 gives conclusions.

2. Experimental System

2.1. Test Rig

The test rig shown in Fig. 1 was built to verify the CNN-based 
fault diagnosis method proposed for WG. The test rig consists of three 
main units: control panel, loading device and single stage WG con-
nected to an induction motor. The loading device, control panel and 
WG are mounted on a steel platform. The induction motor is driven 
by an inverter and coupled to the WG. An elastic coupling is used 
between the output shaft of the WG and an electromagnetic powder 
brake is the loading device. A radial fan protects the loading device 
from excessive heat.  

The inverter is adjusted by a digital panel placed on the control 
panel. The DC loading device is powered by a transformer which has 
5 different outputs so that the system can be loaded at different rates 
as 0%, 25%, 50%, 75% and 100%. Real working conditions are simu-
lated with the inverter and the loading device powered by a multiple 
output transformer. The output speed of the gearbox is measured with 
a tachometer and the input voltage of the loading device with an AC/
DC voltmeter.

2.2. Measurement Elements

Three different measuring devices were used in the experiments: 
thermal camera, accelerometer and microphone. The TESTO 880 ther-
mal camera with 9 Hz image refreshing frequency (Fig. 2 (a)). Thermal 
sensitivity of the camera is less than 0.1 °C and it can focus manually up 
to a distance of 10 cm. It has 160x120 pixel detector and 32°x24° stand-
ard lens. The second one is a PCB ICP® type piezoelectric accelerom-
eter for vibration data. (Fig. 2 (b)). The accelerometer has a sensitivity 
of 1.02 mV/(m/s²) and allows measurements in the frequency range of  
0.5-10000 Hz. Phantom powered Behringer ECM8000 condenser 
microphone is used for sound measurements (Fig. 2 (c)). The micro-
phone has 600-ohm resistance and −60 dB sensitivity within the fre-
quency range of 15 Hz - 20 kHz. In addition, m + p VibPilot dynamic 
signal analyser with 4 analog outputs was used to collect and monitor 
data with accelerometer and microphone.

Fig. 1. Experimental setup: (a) test rig (b) the schematic diagram 
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3. Methodology

This section presents the methodology used to classify WG faults 
that are healthy, wear, pitting and tooth breakage. Deep learning, one 
of the recent machine learning methods, is used as the main tool. As 
stated in previous works [22], deep learning do not require manual ex-
traction of fault features and also achieve better fault detection results. 
It has the ability to reduce the number of network parameters through 
local weight sharing and to avoid the over-fitting of the network when 
the number of samples is insufficient.

3.1. Theoretical Background of CNN 

Convolutional neural network (CNN) is one of the most used 
types of deep learning. CNN consists of convolutional and subsam-
pling layers. Each of these layers has a certain topographic structure 
and the layers contain a different set of neurons. Each neuron is also 
linked to neurons in the previous layers. Fig. 3 shows a typical CNN 
architecture consisting of input, convolutional and subsampling lay-
ers, feature maps, fully connected layer and softmax regression (final 
stage). Convolutional and sub-sampling layers are arranged to reduce 

the computation time and to create spatial and configurable invariance 
gradually [21]. 

Convolutional layers consist of a number of filters. These filters 
convolute input from the previous layer with a set of weights and cre-
ate an output called a feature map. The neurons in the filters are con-
nected to the input data points and these points are multiplied with the 
weights. Because all neurons in the same filter share their weight, the 
optimization time and complexity of CNN is reduced [12]. 

 ( )cn cn cnC f X W b= ∗ +  (1)

Assuming that the convolutional layer input is MxNX R∈ , the 
layer output can be computed as in Eqs. 1. Here, M and N are dimen-
sions of input data ; ∗  is convolution operater; cnC  is the cn-th feature 
map of the convolutional layer; X is the input data matrix; cnW  is the 
weight matrix of cn-th filter of the actual layer; cnb  is the cn-th bias; 
and f is nonlinear activation function that applied to the result [15]. 

To reduce the size of the features and parameters of the network 
by subsampling, the pooling layers come after the convolution lay-

Fig. 2. (a) thermal camera, (b) accelerometer, (c) microphone

Fig. 3. Typical architecture of CNN
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ers. There are three different pooling functions that calcu-
late activation statistics: max pooling, mean pooling, and 
weighted pooling. Among these, max pooling is the most 
preferred function in CNN architecture [21]. S is pooling 
block size and cnC S∈ ; cnP  is the output of the pooling 
layer; then max pooling activation can be written as in Eqs. 
2 [15].

 maxcn cnP C=                           (2)

Finally, fully connected layer follows the combinations 
of convolutional and pooling layers. The fully connected 
layer is similar to a traditional neural network. So it can be applied to 
different classification problems. To achieve fast and accurate results, 
one hidden layer and softmax regression were chosen as the last layer. 
In this paper, as different gearboxes, which are healthy and faulty, are 
classified, the output of the softmax regression can be expressed as in 
Eqs. 3. Here, K is the label number, jW  is the weight matrix; jb  is 
bias; and O is the final result of the CNN [15]. 

1 1 1 1

2 2 2 2

1

( 1 ; , exp( )
( 2 ; , exp( )1

          ...            ... exp( )
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j j

K KjK K
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P y x W b W x b

O
W x b

W x bP y K x W b =

 = + 
   = +   = =   
  +  
  + =   

∑
 (3)

3.2. Fault Diagnosis Protocol 

When gears are in operation they are subject to dynamic operat-
ing loads that affect the temperature, vibration and sound magnitudes 
directly [1].  Therefore, the high temperature values or the increase in 
vibration or sound amplitudes of WGs cannot always be a cause of a 
fault in condition monitoring applications. Considering all working 
loads and speeds of the test rig [46], it should be demonstrated that 
the increase in temperature is due to fault or normal operating load 
(Table 1).

One healthy and three faulty WGs are selected. Faulty WGs were 
made by machining techniques. Healthy (H) and faulty wheels of 
gearboxes are given in Fig. 4. Faulty gearboxes are labelled as F1 
(wear), F2 (pitting) and F3 (tooth breakage). 

3.2.1. Infrared Thermography

Infrared thermography (IRT) has become one of the most effec-
tive condition monitoring tools [3], as they can enable reliable fault 
diagnosing results. Real-time and non-contact measurement of the 
temperature of machine equipment and elements can be carried out 
with IRT. In this way, it is possible to eliminate the failures occurring 
in the machines without causing catastrophic damage and production 
losses [30]. Under actual operating conditions, WGs are heated de-
pending on the loading rate, operating speed and environment tem-
perature. Measuring the radiant thermal energy distribution emitted 
from the surface of the WG and converting this energy distribution 
into a surface thermogram constitutes the basis of the condition moni-
toring with infrared thermography and gives information about the 
current operating status and possible gearbox faults such as wear, pit-
ting, tooth breakage [23]. Therefore, thermal images of healthy and 
faulty WGs with 160x120 pixel were collected for the working condi-
tions given in Table 1 and then, they were fed as visual data to train 
and validate CNN.

Table 1. Gearbox output speeds, loading rates and measurements

WG Output 
Speeds Loading Rates Measurements

Healthy and 
faulty WG

30 rpm

0%, 25%, 50%, 75% 
and 100%

Thermal imaging, vibration 
measurement, and sound 

measurement 
50 rpm

70 rpm

Fig. 4. Healthy (a), F1-wear (b), F2-pitting (c), F3-tooth breakage (d)
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3.2.2. Short Time Fourier Transform and Spectrogram Images of 
Signals 

Time-frequency analysis, one of the most common signal process-
ing approach, can be used to understand the changes of sound and vi-
bration signal components over time [6]. Fourier transform, is used to 
visualize the change of frequency components of the signal over time. 
This visual representation is called the spectrogram of the signal [38]. 
Vibration and sound spectograms were fed as visual data for CNN. In 
this study, short time Fourier transform (STFT) was preferred in order 
to obtain spectrograms.

In STFT, the signal, the function of time, is divided into short seg-
ments and the Fourier transform is applied for each segment.  In the 
case of continuous time, the signal is multiplied by a window function 
when applying STFT operation as seen in Eqs. 4. Here, ( )x t  is the 
time domain signal and ( )w t  is the window function [44]:

 { }( ) ( , ) ( ) ( ) j tSTFT x t x t w t e dtωτ ω τ
+∞

−

−∞

= −∫  (4)

STFT for discrete time is given as in Eqs. 5. Here, [ ]x n  is the sig-
nal and [ ]w n  is the window function. Based on this, the spectrogram 
of the STFT function (Fig. 5) is calculated as in Eqs. 6 [44]:

 
{ }[ ] ( , ) ( , ) [ ] [ ] j nSTFT x t m X m x n w n m e ωω ω

+∞
−

−∞
= = −∑

 
(5)

 { } 2[ ] ( , ) ( , )Spectrogram x t m X mω ω=  (6)

3.2.3. Fault Detection and Classification with Modified GoogLeNet 
Models

GoogLeNet architecture is used to construct CNN models in 
this study for the diagnosis of WG failures. GoogLeNet, offered by 
Szegedy et al. [42], is a deep convolutional neural network architec-
ture based on new software technologies for classification and detec-
tion [42]. GoogLeNet is a pretrained CNN that has 22 layers deep, and 
the networks have an image input size of 224-by-224. The modified 

GoogLeNet properties and detailed structure of modified architecture 
are given in Table 2 and Table A1.

It is commonly agreed that the CNN mostly performs well with 
an enormous amount of data. However, it is possible to leverage deep 
learning even with limited data [4]. In some instances, where you 

can’t gather more data due to cost or inconvenience, then there are 
some ways to follow during the training process. Fine tuning, data 
augmentation, using cosine loss function, or using autoencoders are 
some of them. This study has the data that can be considered as limited 
amount. So that, we did finetuning and data augmentation, respective-
ly. In finetuning, we start with a pretrained model and updated all of 
the model’s parameters for our new task, in essence retraining the 
whole model. All model parameters which are the number of classes 
in the dataset, the batch size used for training and the number of train-

ing epochs we want to run are updated. The train 
model function trains for the specified number 
of epochs and after each epoch runs a full vali-
dation step. After each epoch, the training and 
validation accuracies are reported. For data aug-
mentation, we used a standard GoogleNet archi-
tecture that change the inputs in such a way that 
provides new data while not changing the label 
value. The 160x120 size raw input images are 
converted to 224x224x3 image input size with 
data augmentation. 

Four different deep learning models were 
selected in this study (Table 3). They are ther-
mal image based CNN(IRT-CNN), vibration 
signal based CNN(V-CNN), sound signal based 
CNN(S-CNN) and vibration-sound signals 
based CNN(VS-CNN). IRT-CNN is trained with 
raw thermal images; V-CNN is trained with vi-
bration spectrogram images; S-CNN is trained 
with sound spectrogram images; and VS-CNN 
is trained with both of vibration and sound 
spectrogram images. The technical parameters; 
validation frequency is selected as 6 Hz and the 

learning rate is 0.001 for all models in the table.
A simple flowchart of training process and the images used for the 

classification of faults with different CNN models are given in Fig. 6. 
Accordingly, thermal images and signal spectrogram images of H, F1, 
F2 and F3 gearboxes are collected separately for all operating condi-
tions at first. The data of each gearbox is divided into three groups as 
train, validation and test. GoogLeNet outputs are modified to classify 
healthy and faulty gearboxes. Using train and validation data, CNN 

Table 2. The modified GoogLeNet properties

Depth of layers 22

Number of layers 144

Number of connections 170

Input type Image

Input size 224x224x3

Output type Classification

Output size 4

Weight learn rate factor 10

Bias learn rate factor 10

Loss Function Cross-entropy

Fig. 5 Vibration and sound signals and spectrogram images
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is trained and classification is performed based on deep features. Fi-
nally, the trained network is tested and fault diagnosis is carried out 
according to data labels. 

4. Result and Discussions

This section contains the findings of the experiments and a brief 
discussion on the analysis based on past and current studies.

4.1. Findings of Thermal Imaging and Time-Frequency Sig-
nal Analysis

A total of 120 thermal images were collected in different loading 
rates (LR) and gearbox output speeds (GOS) for each gearbox. A total 
of 480 thermal images were obtained from all gearboxes for training, 
validation and testing of the IRT-CNN model. 

The difference between the temperature distributions on the sur-
faces of healthy and faulty gearboxes increases gradually with increas-

ing LR and GOS. For all LR and GOS, the temperature distributions 
of F1, F2 and F3 gearboxes are higher than H. The thermal images of 
H, F1, F2 and F3 for GOS = 50 rpm and LR = 50% are given in Fig. 
7. The maximum temperature for F1 is 105°C and the average surface 
temperature is 75°C. The hottest gearbox is observed as F1 during 
the experiments. The maximum temperature value for F2 is 93°C and 
the average surface temperature is 66°C. F2 is hotter than F3 for the 
same conditions. The maximum temperature value for F3 is 88°C and 
the average surface temperature is 64°C. The less heated gearbox is 
observed as H. The maximum temperature value for H is 83°C and the 
average surface temperature is 60 °C. For F1, F2, F3 and H gearboxes, 
the minimum surface temperature values measured under these condi-
tions are 18.4°C; 16.7° C; 16.1°C; 15.7 °C, respectively. Accordingly, 
the worn gearbox is the hottest gearbox. Pitting failure causes more 
heat than the broken tooth. The healthy gearbox is the coolest one 
during experiments.

Table 3. Experimental parameters for different deep learning models 

IRT-CNN V-CNN S-CNN VS-CNN Fault Diagnosis

Input Parameters Output Parameters

Raw thermal images Vibration spectro-
gram images

Sound spectrogram 
images

Vibration-sound spec-
trogram images

Healthy (H)

Fault De-
tection

Fault 1 (F1)

Train, Validation and Test Samples Fault 2 (F2)

50%; 25%; 25%

Fault 3 (F3)Loading Rates (LR) 0%; 25%; 50%; 75%; 100%

Gearbox output speed (GOS) 30 rpm; 50 rpm; 70 rpm

Fig. 6. CNN-based fault diagnosis of WG (a) flowchart of training process, and (b) Images
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The number of vibration spectrogram images were 120 for each 
gearbox in different LR and GOS. A total of 480 vibration spectro-
grams were obtained from all gearboxes for training, validation and 
testing of the V-CNN model. In Fig. 8, time waveforms and spectro-
gram images for H, F1, F2 and F3 gearboxes are given in the interval 

of 0-1 s for LR = 50%, GOS = 50 rpm. The sampling 
rate for time-frequency analysis was chosen as 1600 Hz 
and frequencies higher than 1000 Hz were eliminated 
by Butterworth low-pass filter for vibration and sound 
analysis. Fig. 9, shows the time waveforms and spec-
trogram images of sound measurements for LR = 50%, 
GOS = 50 rpm.  The time interval for sound waveform 
is 0-0.4 s. A total of 480 sound spectrogram images 
were also collected for training, validation and testing 
of the S-CNN model. It was seen that the amplitude 
of sound and vibration signals were increasing with 
increasing load and speed. Moreover, different faulty 
gearboxes produced different signal amplitudes as in 
Fig. 8 and Fig. 9 that the amplitudes of the sound and 
vibration signal of the faulty gearboxes are higher than 
the healthy gearbox. From the figures, F1 has the high-
est vibration amplitudes. These amplitudes vary from 
−31.7 2m/s   to 42.6 2m/s   in the 0-1 s time interval 
and 0-750 Hz frequency range. The H gearbox vibra-
tion signal amplitudes range from −28.4 2m/s  to −29.4 

2m/s  and they are the lowest in the same conditions. 
The vibration amplitudes of the F2 generally vary from 
−32.4 2m/s  to 30 2m/s   and larger than amplitudes of 
the F3. In addition, F3 has the highest sound amplitudes, 
ranging from −13 dB to 75 dB in the 0-0.4 s time inter-
val and 0-1900 Hz frequency range. H reducer has the 

lowest sound amplitudes varying from −10.1 dB to 68 dB in the same 
conditions. The sound amplitudes of the F2 are generally between −9 
dB and 72 dB which are larger than the amplitudes of the F3. 

Fig. 7. The thermal images of H, F1, F2 and F3 gearboxes

Fig. 8. Time waveforms and spectrogram images of vibration measurements
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4.2. Results of Fault Diagnosis with Different 
CNN Models

The spectrogram images of vibration and sound sig-
nals were used together in training, validation and test 
of the VS-CNN model. The targets for CNN models are 
healthy and faulty gearboxes. Table 4 shows class labels 
of gearboxes and the number of samples used for train-
ing, validation and testing of different CNN models.

Fig. 10 shows the accuracy rates for different CNN 
models. Accordingly, the highest training and valida-
tion accuracy rates were achieved with the IRT-CNN 
model based on thermal images. It reached 100% in the 
30th iteration and 10 epochs. This success rate is 87.5% 
for V-CNN and 81.67% for S-CNN model. VS-CNN, 
which uses spectrogram images of vibration and sound 
samples together, has the lowest training and validation 
accuracy with 73.33%. Li et al. [24] achieved similar 
results in their study for the condition monitoring of 
bevel gearbox. However, they did not use spectrograms for training and validation of CNN models. In addition, their experi-

ments were carried out under constant 
speed and loading rate, and the effect of 
real working conditions on temperature 
change was not taken into account suf-
ficiently (Table 6, Table 7). 

Fig. 11 shows the losses in training 
and validation progresses for different 
CNN models. Losses are a quantitative 
measure of the difference between the 
predicted output and the actual output, 

Fig. 9. Time waveforms and spectrogram images of sound measurements

Fig. 10. Accuracy rates for different CNN models

Table 4. Class labels and number of samples for CNN models

Class Label Number of Training Samples Number of Validation Samples Number of Test Samples

H 60 30 30

F1 60 30 30

F2 60 30 30

F3 60 30 30
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and decrease with the number of iterations. Depending on 
the suitability and adequacy of the data set, losses and the 
number of iterations decrease. Accordingly, the highest loss 
occurred during the training progress of the VS-CNN mod-
el. Training and verification loss for the IRT-CNN model 
decreased to 0% in the 30th iteration and 10 epochs. 

To test CNN models, 25% of the samples collected 
from the gearboxes was used. Confusion matrices of differ-
ent CNN models are given in Fig. 13. The IRT-CNN model 
classified all test inputs for H, F1, F2 and F3 gearboxes cor-
rectly. For this success rate, the test was repeated 10 times 
and the standard deviation was found to be 0. Whereas the 
confusion matrix of V-CNN model’s success rate is 83.3% 
and half of the samples of the H gearbox is estimated in-
correctly. When the S-CNN model is tested, 81.7% of the 
samples are estimated correctly. The rate of misclassifica-
tion of F1 is high. The lowest test success rate belongs to 
VS-CNN model. In this model, only 65% of all test samples 
were estimated correctly. It can be inferred from confusion 
matrix that the test samples of the A2 gearbox are classified 
incorrect considerably.

Table 5 shows the success rates of CNN models trained 
and tested with different numbers of samples. Accordingly, 
as the number of samples increases, validation and test ac-
curacy rates and training time of all CNN models increase. 
The highest validation and test accuracy rates for all models 
are achieved when 120 samples are used. Validation and test 
accuracy rates of IRT-CNN models are higher than all V-
CNN, S-CNN and VS-CNN models. It is notable that even 
if the IRT-CNN training sample numbers are 30 or 60, it 
still has a very high diagnostic success (89-90%). %).The 

accuracy rates with the increasing amount of train-
ing and testing data of  V-CNN and S-CNN models 
are more affected compared to IRT-CNN models. 
Even with the least number of samples, IRT-CNN 
has 89.3 % accuracy. 

One other topic searched in this study is the 
resolution of images that are to be classified. Reso-
lution of the image varies due to different input 
sources, different imaging devices and different 
environment noises [16] . Variation in images 
resolution alters the visual information of images 
[7]. Fig. 12 shows the variation of accuracy rates 
depending on the image resolutions. When the per-
formance comparison of classifier for IRT-CNN 
dataset analysed from Figure 12, it is noticeable 
that accuracy rate decreases when image resolu-
tion decreases. The results are in accordance with 
the literature [7].

These results have shown that the IRT-CNN al-
gorithm is effective for using the original tempera-
ture values for different fault diagnosis. It is worth 
noting that this study is conducted as a special case 
study in a factory where the unwanted working 
noises are surpassed. However, the system was 
tried to be made as a real as possible. Further ef-
fort can be put and the method can be tried on a 
real shift. 

Table 6 and Table 7 show a general compari-
son of CNN models proposed by Li et al. [24] and 
CNN models proposed from this study.

Fig. 11. Losses for different CNN models

Fig. 12. The change of accuracy rates due to thermal image resolutions

Fig. 13. Confusion matrices of CNN models
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5. Conclusions 

In this paper, a CNN based condition monitoring study based on 
infrared thermal images, vibration spectrogram images and sound 
spectrogram images was performed and the model is used to diagnose 
different types of faults in WGs. In real working conditions with a 
test rig, which can operate at different speed and loading rates, the 
CNN model based on thermal imaging yielded the most successful 
results than other models. Thermal images collected at different load-
ing rates and different speeds increased the success rate of IRT-CNN. 
The operating conditions directly affect the temperature of the gear-
box and the thermal image pattern. Also, different types of faults tend 

to show different temperature distribution under different operating 
conditions. The results showed that healthy and faulty gearbox can 
be correctly classified 100% with the IRT-CNN model; 83.3% with 
the V-CNN model; 81.7% with the S-CNN model; and 65% with the 
VS-CNN model. Based on this comparison, it was found that the use 
of thermal images with convolutional neural networks (CNN) gener-
ates the highest classification rates. With the high resolution detector 
thermal cameras, successful fault detection can be made with small 
data sets considering different operating conditions. A new possible 
advantage of the IRT-CNN model is that it allows remote fault diag-
nosis. It can be useful to work with the thermal cameras, which are 
relatively cheaper than other signal processing devices. Faults of WG 
can be accurately detected with loss of cost, time and money.

Table 5. Effect of the number of samples on the performance of CNN models

CNN Models Number of Samples Validation Accuracy (%) Test Accuracy (%) Training Time (s)

IRT-CNN 30 90.63 89.3 122

IRT-CNN 60 95 90 123

IRT-CNN 120 100 100 366

V-CNN 30 59.38 57.1 129

V-CNN 60 65 61.7 145

V-CNN 120 87.50 83.3 456

S-CNN 30 59.38 42.9 127

S-CNN 60 58.33 41.7 142

S-CNN 120 81.67 81.7 395

VS-CNN 30 40.63 39.3 128

VS-CNN 60 46.67 55 147

VS-CNN 120 73.33 65 423

Table 6. The proposed CNN models in the study

CNN Models Test Accuracy (%) Training Time (s)

IRT-CNN 100 366

V-CNN 83.3 456

S-CNN 81.7 395

VS-CNN 65 423

Table 7. CNN models proposed by Li et al. [24]

CNN Models Test Accuracy (%) Training Time (s)

IRT-CNN 100 470

V-CNN 71.53 542
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Appendix A

Table A1. Detailed structure of modified GoogLeNet

Layer type Patch size/
stride Output size Depth #1x1 #3x3 

reduce #3x3 #5x5 
reduce #5x5 Pool 

proj.

Convolution 7x7/2 112x112x64 1 - - - - - -

Max pool 3x3/2 56x56x64 0 - - - - - -

Convolution 3x3/1 56x56x192 2 - 64 192 - - -

Max pool 3x3/2 28x28x192 0 - - - - - -

Inception(3a) - 28x28x256 2 64 96 128 16 32 32

Inception(3b) - 28x28x480 2 128 128 192 32 96 64

Max pool 3x3/2 14x14x480 0 - - - - - -

Inception(4a) - 14x14x512 2 192 96 208 16 48 64

Inception(4b) - 14x14x512 2 160 112 224 24 64 64

Inception(4c) - 14x14x512 2 128 128 256 24 64 64

Inception(4d) - 14x14x528 2 112 144 288 32 64 64

Inception(4e) - 14x14x832 2 256 160 320 32 128 128

Max pool 3x3/2 7x7x832 0 - - - - - -

Inception(5a) - 7x7x832 2 256 160 320 32 128 128

Inception(5b) - 7x7x1024 2 384 192 384 48 128 128

Avg pool 7x7/1 1x1x1024 0 - - - - - -

Dropout (40%) - 1x1x1024 0 - - - - - -

Fully connected - 1x1x4 1 - - - - - -

Softmax - 1x1x4 0 - - - - - -
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